ContohSoal Matematika Kelas 10 Wajib Tahun Uas/Pas 2021/2022 Semester 1 & 2 Beserta Kunci Jawabannya/Cara Pembahasanya Kurikulum 2013 Nilai Mutlak, Trigonometri Soal Berupa 40 Pilihan Ganda Diserta Kunci Jawabanya Dan 5 Soal Uraian Atau Esai. Soal sma kelas x semester 2 tahun pelajaran simulasi digital kelas.
- Berikut merupakan contoh soal dan kunci jawaban PAT Matematika kelas 10 semester 2 materi trigonometri, relasi dan fungsi, fungsi komposisi, fungsi invers, eksponen, dan alogaritma. Bagi siswa-siswa kelas 10, Penilaian Akhir Tahun atau PAT merupakan salah satu ujian penting yang akan mengukur kemampuan dan prestasi belajar mereka. Untuk membantu persiapan menghadapi ujian tersebut, berikut merupakan contoh soal dan kunci jawaban PAT Matematika kelas 10 demester 2 tahun 2023. PAT atau Ujian Kenaikan Kelas UKK merupakan agenda rutin yang dilaksanakan di akhir semester genap. Tes ini akan mencakup materi dari semua KD Kompetensi Dasar yang telah dipelajari selama semester genap. Materi yang akan diujikan dalam Penilaian Akhir Tahun matematika kelas 10 semester 2 mencakup berbagai topik penting seperti trigonometri, relasi dan fungsi, fungsi komposisi, fungsi invers, eksponen, dan logaritma. Oleh karena itu, peserta didik perlu mempersiapkan diri dengan belajar soal-soal terkait serta memahami materi yang berkaitan. Selain itu, contoh soal dan kunci jawaban PAT Matematika kelas 10 ini juga dapat dijadikan referensi bagi guru untuk memperkaya soal ujian nanti. contoh soal dan kunci jawaban PAT Matematika kelas 10 semester 2 Baca Juga Turun Harga! Tablet Xiaomi Pad 5 Sudah Dapat Dimiliki dengan Budget 4 Jutaan Saja Soal 1Sebuah segitiga PQR memiliki panjang sisi PQ=12 cm, QR=10 cm, dan besar sudut Q=30°. Hitunglah luas segitiga PQR dalam satuan cm^2?..... A. 60 cm^2B. 30√2 cm^2C. 30√3 cm^2D. 45 cm^2E. 30 cm^2 Kunci jawaban E. 30 cm^2 Soal 2Suatu fungsi diketahui hx=fx . gx. Jika nilai gx=2x-1 dan fx=x+6, maka nilai hx adalah..... A. 2x^2 + 11x – 6 B. 2x^2 + 12x + 6C. 2x^2 + 12x – 6D. 2x^2 + 11x + 6E. 2x^2 – 11x + 6 Terkini
ContohSoal Trigonometri Kelas 10 - Trigonometri (dari bahasa Yunani trigonon = "tiga sudut" dan metron = "mengukur")[1] adalah sebuah cabang matematika yang mempelajari hubungan yang meliputi panjang dan sudut segitiga. Bidang ini muncul di masa Hellenistik pada abad ke-3 SM dari penggunaan geometri untuk mempelajari astronomi.
Daftar isi1. Perbandingan Trigonometri Perbandingan Trigonometri Dalam Segitiga Siku-Siku Perbandingan Trigonometri Dalam Koordinat Cartesius Sudut-sudut Istimewa Pengertian Kuadran 2. Rumus Sudut-sudut Berelasi 3. Koordinat Kutub dan Koordinat Cartesius 4. Rumus Identitas Trigonometri 5. Aturan Sinus dan Cosinus Rumus Aturan Sinus Rumus Aturan Cosinus Rumus Luas Segitiga Sembarang Rumus Luas Segi n Beraturan 6. Contoh Soal Trigonometri SMA kelas 10 dan Pembahasan Soal dan Pembahasan Trigonometri SMA kelas 10. Trigonometri merupakan nilai perbandingan sisi-sisi pada segitiga siku-siku maupun koordinat Cartesius yang dikaitkan dengan suatu sudut. Ada enam perbandingan yang menjadi dasar dari trigonometri, yaitu sinus sin, cosinus cos, tangen tan, sekan sec, cosekan csc, dan cotangen cot. Perbandingan Trigonometri1. Perbandingan Trigonometri Dalam Segitiga Siku-SikuSegitiga siku-siku terdiri dari dua sisi yang saling tegak lurus dan satu sisi miring. Trigonometri merupakan besar suatu sudut yang dinyatakan dalam bentuk perbandingan panjang sisi-sisi segitiga tersebut. Perhatikan gambar dan keterangan di bawah ! $Sinus = \dfrac{Depan}{Miring}$ $\Rightarrow$ $sin \\alpha = \dfrac{y}{r}$ $cosec\\alpha = \dfrac{r}{y}$ $Cosinus = \dfrac{Samping}{Miring}$ $\Rightarrow$ $cos\\alpha = \dfrac{x}{r}$ $sec\\alpha = \dfrac{r}{x}$ $Tangen = \dfrac{Depan}{Samping}$ $\Rightarrow$ $tan\\alpha = \dfrac{y}{x}$ $cot\\alpha = \dfrac{x}{y}$2. Perbandingan Trigonometri Dalam Koordinat CartesiusTrigonometri bukan hanya perbandingan sisi-sisi pada segitiga siku-siku. Perbandingan trigonometri juga dapat dinyatakan dalam koordinat Cartesius. Trigonometri dalam segitiga siku-siku terbatas hanya pada sudut lancip, sedangkan dalam koordinat Cartesius bisa mencakup sudut-sudut tumpul. Perhatikan gambar dan keterangan di bawah ! $sinus = \dfrac{ordinat}{radius}$ $\Rightarrow$ $sin\\alpha = \dfrac{b}{r}$ $cosec\\alpha = \dfrac{r}{b}$ $cosinus = \dfrac{absis}{radius}$ $\Rightarrow$ $cos\\alpha = \dfrac{a}{r}$ $sec\\alpha = \dfrac{r}{a}$ $tangen = \dfrac{ordinat}{absis}$ $\Rightarrow$ $tan\\alpha = \dfrac{b}{a}$ $cot\\alpha = \dfrac{a}{b}$3. Sudut-sudut Istimewa 4. Pengertian KuadranKuadran adalah empat bidang yang sama besar yang dibatasi oleh sistem koordinat Cartesius. Sudut $0^{\circ}$ adalah acuan perputaran yang arahnya berlawanan putaran jarum jam. Empat bidang yang terbentuk dibagi menjadi empat kuadran. $Kuadran\ I\ 0^{\circ} 0$, maka $θ$ berada di kuadran . . . . $A.\ I\ dan\ II$ $B.\ I\ dan\ III$ $C.\ I\ dan\ IV$ $D.\ II\ dan\ III$ $E.\ III\ dan\ IV$$sin\ θ > 0$ Supaya $sin\ θ > 0$ positif, maka $i.\ sin\ θ > 0$ positif dan $cos\ θ > 0$ positif. berarti $θ$ ada di kuadran I. $ii.\ sin\ θ < 0$ negatif dan $cos\ θ < 0$ negatif. berarti $θ$ ada di kuadran III. → B. $16$. Jika $cosec\; α = -\sqrt{2}$ dengan $180^{\circ} < \alpha < 270^{\circ}$, maka $tan\ α =$ . . . . $A.\ 0$ $B.\ -\dfrac12\sqrt{2}$ $C.\ -\sqrt{2}$ $D.\ -1$ $E.\ 1$$cosec\; α = -\sqrt{2}$ di kuadran III, berarti $α = 225^{\circ}$ $tan \;225^{\circ} = tan \;180^{\circ} + 45^{\circ}$ $= tan \;45^{\circ}$ $= 1$ → E. $17$. Nilai dari $\dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 15^{\circ}} =$ . . . . $A.\ 0$ $B.\ \dfrac12$ $C.\ \sqrt{2}$ $D.\ 1$ $E.\ \sqrt{3}$$\dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 15^{\circ}}$ $= \dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 90 - 75^{\circ}}$ $= \dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{sin\ 75^{\circ}}$ $= sin\ 30^{\circ}$ $= \dfrac{1}{2}$ → B. $18$. Jika $sin\; 2x - 10 = cos\; 64 + x$, maka $x =$ . . . . $A.\ 10^{\circ}$ $B.\ 11^{\circ}$ $C.\ 12^{\circ}$ $D.\ 13^{\circ}$ $E.\ 14^{\circ}$$sin \;2x - 10^{\circ} = cos \;64^{\circ} + x$ $cos \; 90^{\circ} - 2x - 10^{\circ} = cos \;64^{\circ} + x$ $cos \;100^{\circ} - 2x = cos \;64^{\circ} + x$ $100^{\circ} - 2x = 64^{\circ} + x$ $36^{\circ} = 3x$ $x = 12^{\circ}$ → C. $19$. Diketahui segitiga ABC sembarang. $cos \;\dfrac{1}{2}A + B =$ . . . . $A.\; cos\ C$ $B.\; cos\ \dfrac{1}{2}C$ $C.\; sin\ C$ $D.\; Sin\ \dfrac{1}{2}C$ $E.\; sin\ 2C$$A + B + C = 180$ $A + B = 180 - C$ $\dfrac12A + B = \dfrac12180 - C$ $\dfrac12a + B = 90 - \dfrac12C$ $cos\ \dfrac12A + B = cos\ 90 - \dfrac12C$ $cos\ \dfrac12A + B = sin\ \dfrac12C$ → D. $20.$ Jika $sin \;15^{\circ} = a$, maka $cos \;75^{\circ} =$ . . . . $A.\ a + 1$ $B.\ a - 1$ $C.\ a$ $D.\ 1 - a$ $E.\ -a$$sin\ 15 = a$. $cos\ 75 = cos\ 90 - 15$ $= sin 15$ $= a$ → C. $21.$ Nilai dari $sin\ 135 + cos\ 135 + tan\ 135 =$ . . . . $A.\ -1$ $B.\ 0$ $C.\; -\dfrac12\sqrt{2}$ $D.\; \dfrac12\sqrt{2}$ $E.\ 1$$sin\ 135 + cos\ 135 + tan\ 135$ $= sin\ 180 - 45 + cos\ 180 - 45 + tan\ 180 - 45$ $= sin\ 45 - cos\ 45 - tan\ 45$ $= \dfrac{1}{2}\sqrt{2} - \dfrac{1}{2}\sqrt{2} - 1$ $= -1$ → D. $22.$ Jika $sin \;A = \dfrac12\sqrt{3}$ dan $A$ sudut tumpul, maka $cos\ A =$ . . . . $A.\ -\dfrac12$ $B.\ \dfrac12$ $C.\ -\dfrac12\sqrt{2}$ $D.\ \dfrac12\sqrt{2}$ $E.\ -\dfrac12\sqrt{3}$$sin\; A = \dfrac12\sqrt{3}$ dan $A$ sudut tumpul, berarti $A = 120^{\circ}$ $cos\ 120^o = cos\ 180 - 60^o$ $= -cos\ 60^o$ $= -\dfrac{1}{2}$ → A. $23$. Jika $cos\ x = -\dfrac45$ untuk $0^{\circ} < x < 180^{\circ}$, maka $sin\ x =$ . . . . $A.\ -\dfrac35$ $B.\ \dfrac35$ $C.\ -\dfrac45$ $D.\ -\dfrac53$ $E.\ 1$berdasarkan koordinat cartesius, kuadran II $absis = -4 → a = -4.$ $radius = 5 → r = 5.$ Dengan Dalil Phytagoras, maka $ordinat = 3 → b = 3.$ $sin\ x = \dfrac{ordinat}{radius}$ $sin\ x = \dfrac br$ $= \dfrac35$ → B. $24$. Jika $sin\ 23 = m$, maka $cos\ 113 =$ . . . . $A.\ m$ $B.\ -m$ $C.\ m + 1$ $D.\ 1 - m$ $E.\ \dfrac 1m$$cos\ 113 = cos\ 90 + 23$ $= - sin\ 23$ $= -m$ → B. $25$. Nilai dari $\dfrac{sin\ 45^{\circ}sin\ 15^{\circ}}{cos\ 135^{\circ}cos\ 105^{\circ}}$ = . . . . $A.\ -2$ $B.\ -1$ $C.\ 0$ $D.\ 1$ $E.\ 2$$\dfrac{sin\ 45^{\circ}sin\ 15^{\circ}}{cos\ 135^{\circ}cos\ 105^{\circ}}$ $= \dfrac{sin\ 45sin\ 15}{cos\ 180 - 45cos\ 90 + 15}$ $= \dfrac{sin\ 45sin\ 15}{-cos\ 45-sin\ 15}$ $= \dfrac{sin\ 45sin\ 15}{cos\ 45sin\ 15}$ $= tan\ 45$ $= 1$ → D. $26$. Nilai dari $tan \;\;200^{\circ} =$ . . . . $A.\ -tan\ 20$ $B.\ tan\ 20$ $C.\ -cot\ 20$ $D.\ cot\ 20$ $E.\ 1 - tan\ 20$$tan\ 200 = tan\ 180 + 20$ $= tan\ 20$ → B. $27$. Jika $sin\ π + A = m$ dengan $A$ sudut lancip. Maka $cos\ A =$ . . . . $A.\ -m$ $B.\ m$ $C.\ 1 - m$ $D.\ \sqrt{1 - m^{2}}$ $E.\ -\sqrt{1 - m^{2}}$$sin\ π + A = m$ → $m$ bernilai negatif, karena $π + A$ ada di kuadran III. $-sin\ A = m$ $sin\ A = -m$ Perhatikan segitiga siku-sikunya ! Karena $A$ sudut lancip, maka $cos\ A$ haruslah positif. Maka $cos\; A = \sqrt{1 - m^{2}}$ → D. $28$. Jika $cos \;25^{\circ} = a$, maka $cos\ 295^{\circ} =$ . . . . $A.\ -a$ $B.\ a$ $C.\ \sqrt{1 + a^{2}}$ $D.\ \sqrt{1 - a^{2}}$ $E.\ 1$$cos\ 25 = a$, maka $sin\; 25 = \sqrt{1 - a^{2}}$ Perhatikan segitiga siku-sikunya ! $cos\ 295 = cos\ 270 + 25$ $= sin\ 25$ $= \sqrt{1 - a^{2}}$ → D. $29$. Diketahui $sin\ α + cos\ α = 2p$. Maka nilai dari $2sin\ α cos\ α =$ . . . . $A.\; 2p - 1$ $B.\; 1 - 2p$ $C.\; 1 - 4p^{2}$ $D.\; 4p^{2} - 1$ $E. 1 - 2p^{2}$$sin\; α + cos\; α = 2p$ $sin \;α + cos \;α^{2} = 2p^{2}$ $sin^{2}\; α + 2sin\; + cos^{2}\; α = 4p^{2}$ $1 + 2sin\;\alpha. cos\;\alpha = 4p^{2}$ Ingat! $sin^{2}\;\alpha + cos^{2}\;\alpha = 1$ $2sin\;\alpha .cos\;\alpha = 4p^{2} - 1$ → D. $30.\; \dfrac{sin\; \;x}{tan\; x} =$ . . . . $A. \;sin^{2}\; x$ $B. \;cos^{2}\; x$ $C. \;\dfrac{1}{sin\; x}$ $D. \;sin \;x$ $E. \;cos \;x$$\dfrac{sin \; x}{tan\; x}$ $= \dfrac{sin \; x}{sin \;x/cos\; x}$ $= sin \; x.{\dfrac{cos\; x}{sin \;x}}$ $= cos^{2}\;x$ → B. $31.$ Pada segitiga $ABC$, diketahui sisi $a = 6\ cm$, $b = 10\ cm$, dan sudut $C = 60^{\circ}$. Luas segitiga tersebut sama dengan . . . . $A.\; 10 \;cm^{2}$ $B.\; 15\; cm^{2}$ $C.\; 15\sqrt{3}\; cm^{2}$ $D.\; 20 \;cm^{2}$ $E.\; 20\sqrt{3}\; cm^{2}$$\begin{align} L &= \dfrac{1}{2}absin\ C \\ &= \dfrac{1}{2}. 60 \\ &= \dfrac{1}{2}. &= 15\sqrt{3} → C.\\ \end{align}$ $32$. Didalam suatu lingkaran dengan jari-jari $8$ cm dibuat segi enam beraturan. Luas segi enam beraturan tersebut sama dengan . . . . $A.\; 16 \;cm^{2}$ $B.\; 32 \;cm^{2}$ $C.\; 64\sqrt{3} \;cm^{2}$ $D.\; 96\sqrt{2} \;cm^{2}$ $E.\; 96\sqrt{3} \;cm^{2}$$\begin{align} L &= \dfrac{n}{2}R^{2}sin\ \dfrac{360}{n}\\ &= \dfrac{6}{2}.8^{2}.sin\ \frac{360}{6}\\ &= \dfrac{6}{2}.8^{2}.sin\ 60^o\\ &= &= 96\sqrt{3} → E.\\ \end{align}$ $33$. Pada sebuah segitiga $ABC$, diketahui sudut $A = 30^{\circ}$ sudut $B = 45^{\circ}$, dan panjang sisi $a = 10$ cm. Maka panjang sisi $b =$ . . . . $A.\; 5 \;cm$ $B.\; 5\sqrt{2} \;cm$ $C.\; 5\sqrt{3}\; cm$ $D.\; 10\sqrt{2}\; cm$ $E.\; 10\sqrt{3}\; cm$Perhatikan gambar dibawah ! $\dfrac{a}{sin \;A} = \dfrac{b}{sin \;B}$ $\dfrac{10}{sin\; 30} = \dfrac{b}{sin\; 45}$ $\dfrac{10}{\dfrac12} = \dfrac{b}{\dfrac{\sqrt{2}}{2}}$ $b = 10\sqrt{2}$ → D. $34$. Pada sebuah segitiga $ABC$, panjang $BC = 4$ cm dan $AC = 6\sqrt{2}\; cm.$ Panjang $AB =$ . . . . $A. \;\sqrt{10}\; cm$ $B. \;2\sqrt{10}\; cm$ $C. \;\sqrt{15}\; cm$ $D. \;2\sqrt{15}\; cm$ $E.\; 3\sqrt{15}\; cm$Perhatikan gambar dibawah ! $\begin{align} c^{2} &= a^{2} + b^{2} - 2abcos\;C\\ &= 4^{2} + 6\sqrt{2}^{2} - 45^{\circ}\\ &= 16 + 72 - &= 88 - 48\\ &= 40\\ c &= 2\sqrt{10} → B.\\ \end{align}$ $35$. Dari segitiga $ABC$ diketahui $a = 8\ cm,\ b = 6\ cm$. Jika luas segitiga adalah $12 \;cm^{2}$, maka besar sudut $C$ adalah . . . . $A. \;120^{\circ}$ $B. \;90^{\circ}$ $C. \;60^{\circ}$ $D. \;45^{\circ}$ $E. \;30^{\circ}$Perhatikan gambar dibawah ! $L = \dfrac{1}{2}absin\; C $ $12 = \dfrac{1}{2}. C $ $12 = 24 sin\; C$ $sin\; C = \dfrac{1}{2}$ $C = 30^{\circ}$ → E. $36$. Diketahui $ΔABC$ dengan besar sudut $A = 60^{\circ}$, dan panjang $AB = 16\ cm$. Panjang $BC$ adalah . . . . $A.\; 4\sqrt{4}\; cm$ $B.\; 6\sqrt{3}\; cm$ $C.\; 8\sqrt{6}\; cm$ $D.\; 16\sqrt{2}\; cm$ $E.\; 16\sqrt{3}\; cm$Perhatikan gambar dibawah ! $\dfrac{a}{sin\;A} = \dfrac{c}{sin\;C}$ $\dfrac{a}{\sqrt{3}/2} = \dfrac{16}{\sqrt{2}/2}$ $a = \dfrac{16\sqrt{3}}{\sqrt{2}}$ $a = 8\sqrt{6}$ → C. $37$. Jika $tan^{2}\;x + sec\;x = 5$ dengan $0 ≤ x ≤ \dfrac{\pi}{2}$ maka $cos\ x =$ . . . . $A.\ 0$ $B.\ \dfrac12$ $C.\ \dfrac13$ $D.\ \dfrac12\sqrt{2}$ $E.\ \dfrac12\sqrt{3}$Ingat! $1 + tan^2\ x = sec^2\ x$ $tan^{2}\;x + sec\;x = 5$ $sec^{2}\;x - 1 + sec\;x = 5$ $sec^{2}\;x + sec\;x - 6 = 0$ $sec\;x + 3sec\;x - 2 = 0$ $sec\;x = -3\ atau\ sec\;x = 2$ karena $x$ berada di kuadran I, maka $sec\ x$ harus positif. Jadi, $sec\ x = 2$ → $\dfrac{1}{cos\ x} = 2$ $cos\ x = \dfrac{1}{2}$ → B. $38.\; \dfrac{tanA + tanB}{cotA + cotB}$ sama dengan . . . . $A.\ cot\ A . cot\ B$ $B.\ tan\ A . tan\ B$ $C.\ sec\ A . sec\ B$ $D.\ tan\ A . tan\ B$ $E.\ tan\ A . cosec\ B$$\dfrac{tanA + tanB}{cotA + cotB}$ $= \dfrac{tanA + tanB}{1/tanA + 1/tanB}$ $= \dfrac{tanA + tanB}{tanA + tanB/tanAtanB}$ $= \dfrac{tanA + tanB}{tanA + tanB}.tanAtanB$ $= tanAtanB$ → B. $39.\;sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x =$ . . . . $A.\; -1$ $B.\; 0$ $C.\; 1$ $D.\; sin^{2}x - cos^{2}x$ $E.\; sin^{2}x - cos^{2}x^{2}$Ingat ! $sin^2\ x + cos^2\ x = 1$ $sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x$ $= sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x$ $= sin^{2}\;x + cos^{2}\;xsin^{2}\;x - cos^{2}\;x - 2sin^{2}x$ $= sin^{2}\;x - cos^{2}\;x - 2sin^{2}\;x$ $= -sin^{2}\;x - cos^{2}\;x$ $= -sin^{2}\;x + cos^{2}\;x$ $= -1$ → A. $40$. Koordinat kutub dari $P4\sqrt{3},\; -4$ adalah . . . . $A.\; P4, \;30^{\circ}$ $B.\; P4, \;330^{\circ}$ $C.\; P8, \;30^{\circ}$ $D.\; P8, \;330^{\circ}$ $E.\; P12, \;30^{\circ}$$P4\sqrt{3},\; -4$ → titik P berada dikuadran IV. $a = 4\sqrt{3}$ $b = -4$ $tan\;\theta = \dfrac{-4}{4\sqrt{3}} $ $tan\;\theta = -\dfrac{1}{\sqrt{3}} $ $tan\;\theta = -\dfrac{1}{3}\sqrt{3} $ karena $θ$ berada di kuadran IV, maka $\theta = 360 - 30$ $\theta = 330^{\circ}$ $\begin{align} r^{2} &= a^{2} + b^{2}\\ &= 4\sqrt{3}^{2} + 4^{2}\\ &= 64\\ r &= 8\\ \end{align}$ Jadi $P8,\; 330^{\circ}$ → D. Demikianlah soal dan pembahasan trigonometri SMA kelas 10, semoga bermanfaat. Selamat belajar ! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITBSHARE THIS POST
Untukmendapatkan info2 terupdate,diskusi tentang soal serta ingin sharing pelajaran silahkan kunjungi:INSTAGRAM : Teman.Belajar.OnlineTWITTER :@temanbljronl
ContohSoal Cerita Trigonometri Kelas 10 / Contoh Soal Penerapan Perbandingan Trigonometri Dalam / Dalam permainan bola basket, tim yang bermain bisa menang atau kalah.. Sering dalam berbagai macam permasalahan peluang hanya memiliki dua kemungkinan hasil atau dapat disederhanakan menjadi dua kemungkinan. Contohsoal trigonometri kelas 10 dan jawabannya. Titik P dan Q dinyatakan dengan kordinat polar. 20200501 Soal trigonometri kelas 10 beserta jawabannya. D tan θ BCAB 68. Isian singkat murid dapat menjawab berupa bilangan kata untuk menyebutkan. AC 100 10 cm. Luas segitiga. Rumus Perkalian Sinus dan Kosinus. 3VcZwZB.